2011Curatela di monografia / trattato scientificometadata only access
Applied Scientific Computing VIII: Numerical Approximation and Simulation Technologies, Mathematics and Computers in Simulation, v 82, Issue 1, September 2011, Elsevier ISSN 0378-4754
We prove that the large deviation principle holds for a class of processes inspired by semi-Markov additive processes. For the processes we consider, the sojourn times in the phase process need not be independent and identically distributed. Moreover the state selection process need not be independent of the sojourn times. We assume that the phase process takes values in a finite set and that the order in which elements in the set, called states, are visited is selected stochastically. The sojourn times determine how long the phase process spends in a state once it has been selected. The main tool is a representation formula for the sample paths of the empirical laws of the phase process. Then, based on assumed joint large deviation behavior of the state selection and sojourn processes, we prove that the empirical laws of the phase process satisfy a sample path large deviation principle. From this large deviation principle, the large deviations behavior of a class of modulated additive processes is deduced. As an illustration of the utility of the general results, we provide an alternate proof of results for modulated Lévy processes. As a practical application of the results, we calculate the large deviation rate function for a processes that arises as the International Telecommunications Union's standardized stochastic model of two-way conversational speech.
A method that is used to generate synthetic interferograms of the atmospheric phase delay temporal changes is presented. The Weather Research and Forecasting Model is used to forecast the spatial distribution of the main atmospheric parameters at the acquisition times of synthetic aperture radar (SAR) images. The method is applied to mitigate atmospheric artifacts in SAR interferograms. The Lisbon Region and the Pico and Faial Islands in the Azores archipelago are chosen as case studies. They are characterized by a different temporal behavior of atmospheric phase delay properties. Results are assessed by means of a statistical analysis.
The geomorphological evolution of the Pliocene-Quaternary Auletta basin, a wide fault-bounded depression of the southern Apennines axial zone, Italy, was reconstructed using both DEM-based morphometric analysis and classical morphotectonic investigations. Morphotectonic analyses have been integrated with geological, structural and paleomagnetic data in order to reconstruct the Quaternary evolution of the area. The Auletta basin coincides with the lower valley of the Tanagro River and is filled by Pliocene to Pleistocene marine and continental sediments. The strike of the basin is N120-130 degrees, according to the main fault systems of the area.
Long-term landscape evolution results from interaction and feedback of geomorphic stages with the morphogenesis of erosional land surfaces alternating with tectonic pulses in which also block-tectonic rotation occurred. The ages of the morphological de-activation of such terraced surfaces have been roughly defined on the grounds of their morpho-stratigraphic relationships with Pliocene and Quaternary deposits, and better constrained by radiometric dating. Tectonic tilting has been established from morphological relationships between rotated blocks related to the activity of the Alburni fault line and the several generations of erosional and depositional land surfaces. The stratigraphic, structural, paleomagnetic and geomorphological data presented here suggest that the studied basin appears to have a more complex tectonic evolution than an extensional graben. Transtensional tectonics along NW-SE striking, listric faults of the Alburni margin system created the depression since Pliocene times, whereas extensional tectonics plays a key role in the middle to late Pleistocene morphotectonic evolution of the basin. This work demonstrates the usefulness of an integrated analysis in order to extract information on tectonic activity and landscape evolution in the Auletta basin, as an example for other study areas.
We consider a simple model for signal transport in the cytoplasm. Following some recent experimental evidences, the standard diffusion model is supplemented by advection operated through an attachement/detachement mechanism along microtubules. This model is given by a system of partial differential equations which are cast in different dimensions and connected by suitable exchange rules. A numerical scheme is introduced and some simulations are presented and discussed to show the performances of our model.
Cytoplasmic enhanced transport
Microtubules
Partial differential models
The problem of asymptotic features of front propagation in stirred media is addressed for laminar and turbulent velocity fields. In particular we consider the problem in two dimensional steady and unsteady cellular flows in the limit of very fast reaction and sharp front, i.e., in the geometrical optics limit. In the steady case we provide an analytical approximation for the front speed, vf, as a function of the stirring intensity, U, in good agreement with the numerical results. In the unsteady (time-periodic) case, albeit the Lagrangian dynamics is chaotic, chaos in the front dynamics is relevant only for a transient. Asymptotically the front evolves periodically and chaos manifests only in the spatially wrinkled structure of the front. In addition we study front propagation of reactive fields in systems whose diffusive behavior is anomalous. The features of the front propagation depend, not only on the scaling exponent ?, which characterizes the diffusion properties, ((x(t) - x(0))2 ~ t2?), but also on the detailed shape of the probability distribution of the diffusive process.
The results of accurate compressible Navier-Stokes simulations of aerodynamic heating of the Vega launcher are presented. Three selected steady conditions of the Vega mission profile are considered: the first corresponding to the altitude of 18 km, the second to 25 km and the last to 33 km. The numerical code is based on the mathematical model described by the Favre-Average-Navier-Stokes equations; the turbulent model chosen for closure is the one-equation model by Spalart-Allmaras. The equations are discretized by a finite volume approach, that can handle block-structured meshes with partial overlap ("Chimera" grid-overlapping technique). The isothermal boundary condition has been applied to the lancher wall. Particular care was devoted to the construction of the discrete model; as a matter of facts, the launcher is equipped with many protrusions and geometrical peculiarities (as antennas, raceways, inter-stage connection flanges and retrorockets) that are expected to affect considerably the
local thermal flow-field and the level of heat fluxes, because the flow have to undergo strong variation in space; consequently, special attention was devoted to the definition of a tailored mesh, capable of catching local details of the aerothermal flow field (shocks, expansion fans, boundary layer, etc..). The computed results are reported together with uncertainty and actual convergence order, that were estimated by the standard procedures suggested by AIAA.
In this work the numerical simulations of a submarine in straight ahead motion with the appendages at several prescribed deflection angles are performed. Due to the complex geometry involved (the presence of moving appendages), these simulations are rather demanding form the point of view of both grid generation and accuracy of the numerical method. In order to analyze these aspects, the numerical solutions are computed by means of an unsteady Reynolds averaged Navier-Stokes equations solver, which is particularly effective because of the high order discretization schemes adopted. From the point of view of mesh construction, a dynamic overset grid technique is used, where each geometrical element of the whole geometry is discretized with a set of block-structured body-conformal mesh with partial overlapping (Chimera approach). In the present paper, the details of the method and numerical results for several deflection angles of the bow and stern planes are presented.