List of publications

2 results found

Search by title or abstract

Search by author

Select year

Filter by type

 
2024 Articolo in rivista open access

Experimental research on the TCV tokamak

Duval B. P. ; Abdolmaleki A. ; Agostini M. ; Ajay C. J. ; Alberti S. ; Alessi E. ; Anastasiou G. ; Andrebe Y. ; Apruzzese G. M. ; Auriemma F. ; Ayllon-Guerola J. ; Bagnato F. ; Baillod A. ; Bairaktaris F. ; Balbinot L. ; Balestri A. ; Baquero-Ruiz M. ; Barcellona C. ; Bernert M. ; Bin W. ; Blanchard P. ; Boedo J. ; Bolzonella T. ; Bombarda F. ; Boncagni L. ; Bonotto M. ; Bosman T. O. S. J. ; Brida D. ; Brunetti D. ; Buchli J. ; Buerman J. ; Buratti P. ; Burckhart A. ; Busil D. ; Caloud J. ; Camenen Y. ; Cardinali A. ; Carli S. ; Carnevale D. ; Carpanese F. ; Carpita M. ; Castaldo C. ; Causa F. ; Cavalier J. ; Cavedon M. ; Cazabonne J. A. ; Cerovsky J. ; Chapman B. ; Chernyshova M. ; Chmielewski P. ; Chomiczewska A. ; Ciraolo G. ; Coda S. ; Colandrea C. ; Contre C. ; Coosemans R. ; Cordaro L. ; Costea S. ; Craciunescu T. ; Crombe K. ; Dal Molin A. ; D'Arcangelo O. ; de Las Casas D. ; Decker J. ; Degrave J. ; de Oliveira H. ; Derks G. L. ; di Grazia L. E. ; Donner C. ; Dreval M. ; Dunne M. G. ; Durr-Legoupil-Nicoud G. ; Esposito B. ; Ewalds T. ; Faitsch M. ; Farnik M. ; Fasoli A. ; Felici F. ; Ferreira J. ; Fevrier O. ; Ficker O. ; Frank A. ; Fransson E. ; Frassinetti L. ; Fritz L. ; Furno I. ; Galassi D. ; Galazka K. ; Galdon-Quiroga J. ; Galeani S. ; Galperti C. ; Garavaglia S. ; Garcia-Munoz M. ; Gaudio P. ; Gelfusa M. ; Genoud J. ; Gerru Miguelanez R. ; Ghillardi G. ; Giacomin M. ; Gil L. ; Gillgren A. ; Giroud C. ; Golfinopoulos T. ; Goodman T. ; Gorini G. ; Gorno S. ; Grenfell G. ; Griener M. ; Gruca M. ; Gyergyek T. ; Hafner R. ; Hamed M. ; Hamm D. ; Han W. ; Harrer G. ; Harrison J. R. ; Hassabis D. ; Henderson S. ; Hennequin P. ; Hidalgo-Salaverri J. ; Hogge J. -P. ; Hoppe M. ; Horacek J. ; Huber A. ; Huett E. ; Iantchenko A. ; Innocente P. ; Ionita-Schrittwieser C. ; Ivanova Stanik I. ; Jablczynska M. ; van Vuuren A. J. ; Jardin A. ; Jarleblad H. ; Jarvinen A. E. ; Kalis J. ; Karimov R. ; Karpushov A. N. ; Kavukcuoglu K. ; Kay J. ; Kazakov Y. ; Keeling J. ; Kirjasuo A. ; Koenders J. T. W. ; Kohli P. ; Komm M. ; Kong M. ; Kovacic J. ; Kowalska-Strzeciwilk E. ; Krutkin O. ; Kudlacek O. ; Kumar U. ; Kwiatkowski R. ; Labit B. ; Laguardia L. ; Laszynska E. ; Lazaros A. ; Lee K. ; Lerche E. ; Linehan B. ; Liuzza D. ; Lunt T. ; Macusova E. ; Mancini D. ; Mantica P. ; Maraschek M. ; Marceca G. ; Marchioni S. ; Mariani A. ; Marin M. ; Marinoni A. ; Martellucci L. ; Martin Y. ; Martin P. ; Martinelli L. ; Martinelli F. ; Martin-Solis J. R. ; Masillo S. ; Masocco R. ; Masson V. ; Mathews A. ; Mattei M. ; Mazon D. ; Mazzi S. ; Mazzi S. ; Medvedev S. Y. ; Meineri C. ; Mele A. ; Menkovski V. ; Merle A. ; Meyer H. ; Mikszuta-Michalik K. ; Miron I. G. ; Molina Cabrera P. A. ; Moro A. ; Murari A. ; Muscente P. ; Mykytchuk D. ; Nabais F. ; Napoli F. ; Nem R. D. ; Neunert M. ; Nielsen S. K. ; Nielsen A. ; Nocente M. ; Noury S. ; Nowak S. ; Nystrom H. ; Offeddu N. ; Olasz S. ; Oliva F. ; Oliveira D. S. ; Orsitto F. P. ; Osborne N. ; Dominguez P. O. ; Pan O. ; Panontin E. ; Papadopoulos A. D. ; Papagiannis P. ; Papp G. ; Passoni M. ; Pastore F. ; Pau A. ; Pavlichenko R. O. ; Pedersen A. C. ; Pedrini M. ; Pelka G. ; Peluso E. ; Perek A. ; Von Thun C. P. ; Pesamosca F. ; Pfau D. ; Piergotti V. ; Pigatto L. ; Piron C. ; Piron L. ; Pironti A. ; Plank U. ; Plyusnin V. ; Poels Y. R. J. ; Pokol G. I. ; Poley-Sanjuan J. ; Poradzinski M. ; Porte L. ; Possieri C. ; Poulsen A. ; Pueschel M. J. ; Putterich T. ; Quadri V. ; Rabinski M. ; Ragona R. ; Raj H. ; Redl A. ; Reimerdes H. ; Reux C. ; Riedmiller M. ; Rienacker S. ; Rigamonti D. ; Rispoli N. ; Rivero-Rodriguez J. F. ; Madrid C. F. R. ; Rueda J. R. ; Ryan P. J. ; Salewski M. ; Salmi A. ; Sassano M. ; Sauter O. ; Schoonheere N. ; Schrittwieser R. W. ; Sciortino F. ; Selce A. ; Senni L. ; Sharapov S. ; Sheikh U. A. ; Sieglin B. ; Silva M. ; Silvagni D. ; Schmidt B. S. ; Simons L. ; Solano E. R. ; Sozzi C. ; Spolaore M. ; Spolladore L. ; Stagni A. ; Strand P. ; Sun G. ; Suttrop W. ; Svoboda J. ; Tal B. ; Tala T. ; Tamain P. ; Tardocchi M. ; Biwole A. T. ; Tenaglia A. ; Terranova D. ; Testa D. ; Theiler C. ; Thornton A. ; Thrysoe A. S. ; Tomes M. ; Tonello E. ; Torreblanca H. ; Tracey B. ; Tsimpoukelli M. ; Tsironis C. ; Tsui C. K. ; Ugoletti M. ; Vallar M. ; van Berkel M. ; van Mulders S. ; van Rossem M. ; Venturini C. ; Veranda M. ; Verdier T. ; Verhaegh K. ; Vermare L. ; Vianello N. ; Viezzer E. ; Villone F. ; Vincent B. ; Vincenzi P. ; Voitsekhovitch I. ; Votta L. ; Vu N. M. T. ; Wang Y. ; Wang E. ; Wauters T. ; Weiland M. ; Weisen H. ; Wendler N. ; Wiesen S. ; Wiesenberger M. ; Wijkamp T. ; Wuthrich C. ; Yadykin D. ; Yang H. ; Yanovskiy V. ; Zebrowski J. ; Zestanakis P. ; Zuin M. ; Zurita M. ; Ricci D.

Tokamak à configuration variable (TCV), recently celebrating 30 years of near-continual operation, continues in its missions to advance outstanding key physics and operational scenario issues for ITER and the design of future power plants such as DEMO. The main machine heating systems and operational changes are first described. Then follow five sections: plasma scenarios. ITER Base-Line (IBL) discharges, triangularity studies together with X3 heating and N2 seeding. Edge localised mode suppression, with a high radiation region near the X-point is reported with N2 injection with and without divertor baffles in a snowflake configuration. Negative triangularity (NT) discharges attained record, albeit transient, βN ∼ 3 with lower turbulence, higher low-Z impurity transport, vertical stability and density limits and core transport better than the IBL. Positive triangularity L-Mode linear and saturated ohmic confinement confinement saturation, often-correlated with intrinsic toroidal rotation reversals, was probed for D, H and He working gases. H-mode confinement and pedestal studies were extended to low collisionality with electron cyclotron heating obtaining steady state electron iternal transport barrier with neutral beam heating (NBH), and NBH driven H-mode configurations with off-axis co-electron cyclotron current drive. Fast particle physics. The physics of disruptions, runaway electrons and fast ions (FIs) was developed using near-full current conversion at disruption with recombination thresholds characterised for impurity species (Ne, Ar, Kr). Different flushing gases (D2, H2) and pathways to trigger a benign disruption were explored. The 55 kV NBH II generated a rich Alfvénic spectrum modulating the FI fas ion loss detector signal. NT configurations showed less toroidal Alfvén excitation activity preferentially affecting higher FI pitch angles. Scrape-off layer and edge physics. gas puff imaging systems characterised turbulent plasma ejection for several advanced divertor configurations, including NT. Combined diagnostic array divertor state analysis in detachment conditions was compared to modelling revealing an importance for molecular processes. Divertor physics. Internal gas baffles diversified to include shorter/longer structures on the high and/or low field side to probe compressive efficiency. Divertor studies concentrated upon mitigating target power, facilitating detachment and increasing the radiated power fraction employing alternative divertor geometries, optimised X-point radiator regimes and long-legged configurations. Smaller-than-expected improvements with total flux expansion were better modelled when including parallel flows. Peak outer target heat flux reduction was achieved (>50%) for high flux-expansion geometries, maintaining core performance (H98 > 1). A reduction in target heat loads and facilitated detachment access at lower core densities is reported. Real-time control. TCV’s real-time control upgrades employed MIMO gas injector control of stable, robust, partial detachment and plasma β feedback control avoiding neoclassical tearing modes with plasma confinement changes. Machine-learning enhancements include trajectory tracking disruption proximity and avoidance as well as a first-of-its-kind reinforcement learning-based controller for the plasma equilibrium trained entirely on a free-boundary simulator. Finally, a short description of TCV’s immediate future plans will be given.

EPFL plasma review SPC TCV
2021 Articolo in rivista open access

Cherenkov probes and runaway electrons diagnostics

Kwiatkowski R. ; Rabinski M. ; Sadowski M. J. ; Zebrowski J. ; Karpinski P. ; Coda S. ; Agostini M. ; Albanese R. ; Alberti S. ; Alessi E. ; Allan S. ; Allcock J. ; Ambrosino R. ; Anand H. ; Andrebe Y. ; Arnichand H. ; Auriemma F. ; Ayllon-Guerola J. M. ; Bagnato F. ; Ball J. ; Baquero-Ruiz M. ; Beletskii A. A. ; Bernert M. ; Bin W. ; Blanchard P. ; Blanken T. C. ; Boedo J. A. ; Bogar O. ; Bolzonella T. ; Bombarda F. ; Bonanomi N. ; Bouquey F. ; Bowman C. ; Brida D. ; Bucalossi J. ; Buermans J. ; Bufferand H. ; Buratti P. ; Calabro G. ; Calacci L. ; Camenen Y. ; Carnevale D. ; Carpanese F. ; Carr M. ; Carraro L. ; Casolari A. ; Causa F. ; Cerovsky J. ; Chellai O. ; Chmielewski P. ; Choi D. ; Christen N. ; Ciraolo G. ; Cordaro L. ; Costea S. ; Cruz N. ; Czarnecka A. ; Molin A. D. ; David P. ; Decker J. ; De Oliveira H. ; Douai D. ; Dreval M. B. ; Dudson B. ; Dunne M. ; Duval B. P. ; Eich T. ; Elmore S. ; Embreus O. ; Esposito B. ; Faitsch M. ; Farnik M. ; Fasoli A. ; Fedorczak N. ; Felici F. ; Feng S. ; Feng X. ; Ferro G. ; Fevrier O. ; Ficker O. ; Fil A. ; Fontana M. ; Frassinetti L. ; Furno I. ; Gahle D. S. ; Galassi D. ; Galazka K. ; Gallo A. ; Galperti C. ; Garavaglia S. ; Garcia J. ; Garcia-Munoz M. ; Garrido A. J. ; Garrido I. ; Gath J. ; Geiger B. ; Giruzzi G. ; Gobbin M. ; Goodman T. P. ; Gorini G. ; Gospodarczyk M. ; Granucci G. ; Graves J. P. ; Gruca M. ; Gyergyek T. ; Hakola A. ; Happel T. ; Harrer G. F. ; Harrison J. ; Havlickova E. ; Hawke J. ; Henderson S. ; Hennequin P. ; Hesslow L. ; Hogeweij D. ; Hogge J. -P. ; Hopf C. ; Hoppe M. ; Horacek J. ; Huang Z. ; Hubbard A. ; Iantchenko A. ; Igochine V. ; Innocente P. ; Schrittwieser C. I. ; Isliker H. ; Jacquier R. ; Jardin A. ; Kappatou A. ; Karpushov A. ; Kazantzidis P. -V. ; Keeling D. ; Kirneva N. ; Komm M. ; Kong M. ; Kovacic J. ; Krawczyk N. ; Kudlacek O. ; Kurki-Suonio T. ; Kwiatkowski R. ; Labit B. ; Lazzaro E. ; Linehan B. ; Lipschultz B. ; Llobet X. ; Lombroni R. ; Loschiavo V. P. ; Lunt T. ; Macusova E. ; Madsen J. ; Maljaars E. ; Mantica P. ; Maraschek M. ; Marchetto C. ; Marco A. ; Mariani A. ; Marini C. ; Martin Y. ; Matos F. ; Maurizio R. ; Mavkov B. ; Mazon D. ; McCarthy P. ; McDermott R. ; Menkovski V. ; Merle A. ; Meyer H. ; Micheletti D. ; Militello F. ; Mitosinkova K. ; Mlynar J. ; Moiseenko V. ; Cabrera P. A. M. ; Morales J. ; Moret J. -M. ; Moro A. ; Mumgaard R. T. ; Naulin V. ; Nem R. D. ; Nespoli F. ; Nielsen A. H. ; Nielsen S. K. ; Nocente M. ; Nowak S. ; Offeddu N. ; Orsitto F. P. ; Paccagnella R. ; Palha A. ; Papp G. ; Pau A. ; Pavlichenko R. O. ; Perek A. ; Pericoli Ridolfini V. ; Pesamosca F. ; Piergotti V. ; Pigatto L. ; Piovesan P. ; Piron C. ; Plyusnin V. ; Poli E. ; Porte L. ; Pucella G. ; Puiatti M. E. ; Putterich T. ; Rasmussen J. J. ; Ravensbergen T. ; Reich M. ; Reimerdes H. ; Reimold F. ; Reux C. ; Ricci D. ; Ricci P. ; Rispoli N. ; Rosato J. ; Saarelma S. ; Salewski M. ; Salmi A. ; Sauter O. ; Scheffer M. ; Schlatter C. ; Schneider B. S. ; Schrittwieser R. ; Sharapov S. ; Sheeba R. R. ; Sheikh U. ; Shousha R. ; Silva M. ; Sinha J. ; Sozzi C. ; Spolaore M. ; Stipani L. ; Strand P. ; Tala T. ; Biwole A. S. T. ; Teplukhina A. A. ; Testa D. ; Theiler C. ; Thornton A. ; Tomaz G. ; Tomes M. ; Tran M. Q. ; Tsironis C. ; Tsui C. K. ; Urban J. ; Valisa M. ; Vallar M. ; Van Vugt D. ; Vartanian S. ; Vasilovici O. ; Verhaegh K. ; Vermare L. ; Vianello N. ; Viezzer E. ; Vijvers W. A. J. ; Villone F. ; Voitsekhovitch I. ; Vu N. M. T. ; Walkden N. ; Wauters T. ; Weiland M. ; Weisen H. ; Wensing M. ; Wiesenberger M. ; Wilkie G. ; Wischmeier M. ; Wu K. ; Yoshida M. ; Zagorski R. ; Zanca P. ; Zisis A. ; Zuin M.

The beams of fast runaway electrons (RE), which are often produced during tokamak discharges, are particularly dangerous and can induce serious damages of the vacuum vessel and internal components of the machine. The proper and fast diagnostics of RE beams is essential for controlling the discharge, e.g., by early mitigation of disruptions and potentially dangerous RE beams. The diagnostics of RE beams is usually based on measurements of the radiation emitted either by these electrons, or as a result of their interactions with plasma and/or vessel walls. Such a radiation is usually recorded by the means of probes placed outside the vacuum vessel. The method developed by our team is based on the probe located inside the vacuum vessel. The probe can be used to detect highly localized RE bunches and to determine their spatial and temporal characteristics. During last few years, the NCBJ team have developed and used the RE diagnostics based on the Cherenkov effect observed in diamond radiators coupled with fast photomultipliers. During the investigated discharges, the probe was inserted into the vacuum vessel, and its head was placed at the plasma edge, where fast RE are expected. A correlation between signals recorded using our probes and other diagnostics, e.g., hard x-ray signals, was also studied. In this paper, we present recent results of the RE measurements by means of Cherenkov probes, which were performed in the COMPASS and TCV tokamaks.

runaways tokamak cherenkov