List of publications

2 results found

Search by title or abstract

Search by author

Select year

Filter by type

 
2013 Articolo in rivista restricted access

Effects of 3,4-dimethylphyrazole phosphate-added nitrogen fertilizers on crop growth and N2O emissions in Southern Italy

The effect of the nitrification inhibitor 3,4-dimethylphyrazole phosphate (DMPP) on N-fertilized crop growth and soil N2O emissions were studied at two experimental sites in Southern Italy, characterised by a Mediterranean climate and different soil texture. The experiments were a randomized block design of two treatments: crop fertilized with NH4NO3 (considered the control treatment) or amended with DMPP plus NH4NO3 (considered the DMPP treatment). ANOVA was performed to assess differences between treatments and fertilization periods whereas simple and multiple linear regressions were performed in order to assess the effect of the soil-related in-dependent variables on soil gases emissions. Growth of potato plants fertilized with DMPP-added nitrogen was enhanced compared to control plants, whereas no benefit on maize plants grown during summer was observed. N2O emissions measured from soil to potato after the first fertilization with DMPP-added nitrogen was reduced during winter, but was higher than control after the second fertilizer application in spring, leading to comparable N2O emission factors (EF1) between treatments. In maize N2O emissions and EF1 were lower for DMPP compared to control treatment. The effectiveness of reduction in soil N2O emission was influenced by soil temperature and water-filled pore space (WFPS) in both experimental sites. However, the overall effect of WFPS was contrasting as N2O emissions were decreased in potato and enhanced in maize.

greenhouse gases; plant growth; nitrous oxide; DMPP; Mediterranean climate
2011 Articolo in rivista restricted access

The influence of management and environmental variables on soil N2O emissions in a crop system in Southern Italy

Soil N2O emissions were monitored throughout a 3-year crop rotation including maize, fennel and a ryegrass-clover. sward, at Borgo Cioffi NitroEurope site. N2O emission rates were highly variable in time and space and controlled by soil nitrogen and soil water content. The N2O effluxes were low for most of the monitored period. The highest N2O emissions were recorded throughout the 2007 maize cropping season, ranged from 15.2 to 196.2 mug m-2 h-1 whereas the lowest ones ranged from -5 to 10 mug m-2 h-1 during the 2007 2008 ryegrass-clover winter crop. For the maize crops, N2O peaks were detected after fertilization but with a delay of some weeks from applications, probably due to the presence of DMPP nitrification inhibitor in the applied fertilizer. A properly designed ANOVA model was developed to explain the influence of the main chemical-physical factors. This model also allowed the quantification of the delay time in peak emissions following fertilization, which resulted variable over the years and ranged between 2 and 21 days. A dependence of emissions from soil temperature and moisture was found, with significant interactions in some instances. Calculated Emission Factors (maize 2007: 0.48%; ryegrass-clover sward 2007 2008: 0.05%; maize 2008: 0.14%; fennel: 0.28% 2008 2009; maize 2009: .015%) resulted well below the values reported in the literature and the 1% reference value indicated by IPCC, probably due to a suboptimal water regime inducing low Water Filled Pore Space (WFPS) values.

Nitrous oxide Emission factor Empirical model Mediterranean climate