List of publications

36 results found

Search by title or abstract

Search by author

Select year

Filter by type

 
2022 Presentazione / Comunicazione non pubblicata (convegno, evento, webinar...) restricted access

Final MIPAS L1 and L2 V8 full mission reprocessing, lessons learnt and possible further improvements

P. Raspollini ; B. M. Dinelli ; F. Barbara ; M. Bianchini ; M. Birk ; B. Carli ; S. Ceccherini ; A. Dehn ; M. Gai ; A. Dudhia ; J. M. Flaud ; M. Hoepfner ; D. Hubert ; A. Keppens ; M. Kiefer ; A. Kleinert ; D. Moore ; E. Papandrea ; G. Perron ; A. Piro ; M. López-Puertas ; J. Remedios ; M. Ridolfi ; L. Sgheri ; G. Wagner ; G. Wetzel ; N. Zoppetti

MIPAS is a Fourier Transform spectrometer that measured the atmospheric limb emission spectra in the middle infrared on board the ENVISAT satellite. These measurements allowed the global monitoring of the three-dimensional (latitude, longitude and altitude) distribution of temperature and of the concentrations of many species, during both day and night, for 10 years, from July 2002 to April 2012. MIPAS measurements allowed to study the atmosphere from the upper troposphere to the stratosphere and above, up to the thermosphere. The interest in these measurements goes beyond the end of the mission, as they can be used in long time series of data to determine changes in atmospheric composition and in our planet's climate. Furthermore, if the Changing-Atmosphere Infra-Red Tomography Explorer (CAIRT) mission, one of four candidates for Earth Explorer 11, will be selected, MIPAS data will constitute a benchmark for these measurements. CAIRT exploits indeed the heritage of MIPAS on ENVISAT, but allows to measure the composition of the atmosphere with unprecedented three-dimensional resolution being the first imaging Fourier Transform spectrometer sounding the limb of the atmosphere from space. For the last reanalysis of the whole MIPAS mission, a significant effort was made by the MIPAS Quality Working Group, supported by ESA, to improve both L1 [1] and L2 processors, as well as spectroscopy and Level 2 Initial Guess profiles [2], with the objectives of obtaining L2 products with increased accuracy, better temporal stability, and a larger number of retrieved species. The main improvements of L1 processor were related to the radiometric calibration and pointing. With these new processors a MIPAS full mission reprocessing has been recently performed ([1] and [3]). The quality of this final operational data set has been assessed with comprehensive validation studies including comparisons to ground-based in-situ and balloon-borne measurements. The dataset containing the new version 8 of both L1 and L2 products and covering the entire MIPAS operational lifetime period (2002-2012) is available at ESA Earth Online web site.This paper will focus on the lessons learnt, on the quality of the reprocessed data, on the remaining problems, and on further improvements that could improve the quality of both MIPAS L1 and L2 datasets.[1] Kleinert et al. Kleinert, A., Birk, M., Perron, G., and Wagner, G.: Level 1b error budget for MIPAS on ENVISAT, Atmos. Meas. Tech., 11, 5657-5672,https://doi.org/10.5194/amt-11-5657-2018, 2018 [2] Raspollini, P., Arnone, E., Barbara, F., Bianchini, M., Carli, B., Ceccherini, S., Chipperfield, M. P., Dehn, A., Della Fera, S., Dinelli, B. M., Dudhia, A., Flaud, J.-M., Gai, M., Kiefer, M., López-Puertas, M., Moore, D. P., Piro, A., Remedios, J. J., Ridolfi, M., Sembhi, H., Sgheri, L., and Zoppetti, N.: Level 2 processor and auxiliary data for ESA Version 8 final full mission analysis of MIPAS measurements on ENVISAT, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-235, in review, 2021. [3] Dinelli, B. M., Raspollini, P., Gai, M., Sgheri, L., Ridolfi, M., Ceccherini, S., Barbara, F., Zoppetti, N., Castelli, E., Papandrea, E., Pettinari, P., Dehn, A., Dudhia, A., Kiefer, M., Piro, A., Flaud, J.-M., Lopez-Puertas, M., Moore, D., Remedios, J., and Bianchini, M.: The ESA MIPAS/ENVISAT Level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-215, accepted, 2021.

MIPAS Full mission reprocessing Level 2 products Level 1 products
2022 Articolo in rivista open access

Level 2 processor and auxiliary data for ESA Version 8 final fullmission analysis of MIPAS measurements on ENVISAT

Piera Raspollini ; Enrico Arnone ; Flavio Barbara ; Massimo Bianchini ; Bruno Carli ; Simone Ceccherini ; Martyn P. Chipperfield ; Angelika Dehn ; Stefano Della Fera ; Bianca Maria Dinelli ; Anu Dudhia ; Jean-Marie Flaud ; Marco Gai ; Michael Kiefer ; Manuel López-Puertas ; David P. Moore ; Alessandro Piro ; John J. Remedios ; Marco Ridolfi ; Harjinder Sembhi ; Luca Sgheri ; Nicola Zoppetti

High quality long-term data sets of altitude-resolved measurements of the atmospheric composition areimportant because they can be used both to study the evolu-tion of the atmosphere and as a benchmark for future mis-sions. For the final ESA reprocessing of MIPAS (MichelsonInterferometer for Passive Atmospheric Sounding) on ENVISAT (ENViromental SATellite) data, numerous improve-ments were implemented in the Level 2 (L2) processor Op-timised Retrieval Model (ORM) version 8.22 (V8) and itsauxiliary data. The implemented changes involve all aspects of the processing chain, from the modelling of the measure-ments with the handling of the horizontal inhomogeneitiesalong the line of sight to the use of the optimal estimationtechnique to retrieve the minor species, from a more sensitive approach to detecting the spectra affected by cloudsto a refined method for identifying low quality products. Improvements in the modelling of the measurements werealso obtained with an update of the used spectroscopic dataand of the databases providing the a priori knowledge ofthe atmosphere. The HITRAN_mipas_pf4.45 spectroscopic database was finalised with new spectroscopic data verifiedwith MIPAS measurements themselves, while recently measured cross-sections were used for the heavy molecules. TheLevel 2 Initial Guess (IG2) data set, containing the clima-tology used by the MIPAS L2 processor to generate the ini-tial guess and interfering species profiles when the retrieved profiles from previous scans are not available, was improved taking into account the diurnal variation of the profiles defined using climatologies from both measurements and models. Horizontal gradients were generated using the ECMWFERA-Interim data closest in time and space to the MIPASdata. Further improvements in the L2 V8 products derivedfrom the use of the L1b V8 products, which were upgraded to reduce the instrumental temporal drift and to handle theabrupt changes in the calibration gain. The improvements in-troduced into the ORM V8 L2 processor and its upgraded auxiliary data, together with the use of the L1b V8 products, lead to the generation of the MIPAS L2 V8 products, which are characterised by an increased accuracy, better temporal stability and a greater number of retrieved species.

Atmospheric composition L2 analysis MIPAS measurements
2022 Articolo in rivista open access

Emissivity retrievals with FORUM's end-to-end simulator:challenges and recommendations

Maya BenYami ; Hilke Oetjen ; Helen Brindley ; William Cossich ; Dulce Lajas ; Tiziano Maestri ; Davide Magurno ; Piera Raspollini ; Luca Sgheri ; Laura Warwick

Spectral emissivity is a key property of the Earth's surface, of which only very few measurements exist so farin the far-infrared (FIR) spectral region, even though recent work has shown that the FIR is important for accurate mod-elling of the global climate. The European Space Agency's9th Earth Explorer, FORUM (Far-infrared Outgoing Radi-ation Understanding and Monitoring) will provide the firstglobal spectrally resolved measurements of the Earth's top-of-the-atmosphere (TOA) spectrum in the FIR. In clear-skyconditions with low water vapour content, these measurements will provide a unique opportunity to retrieve spectrally resolved FIR surface emissivity. In preparation for the FORUM mission with an expected launch in 2027, this study takes the first steps towards the development of an opera-tional emissivity retrieval for FORUM by investigating the sensitivity of the emissivity product of a full spectrum optimal estimation retrieval method to different physical andoperational parameters. The tool used for the sensitivity testsis the FORUM mission's end-to-end simulator. These tests show that the spectral emissivity of most surface types canbe retrieved for dry scenes in the 350-600 cm-1 region, with an absolute uncertainty ranging from 0.005 to 0.01. In addition, the quality of the retrieval is quantified with respectto the precipitable water vapour content of the scene, and the uncertainty caused by the correlation of emissivity withsurface temperature is investigated. Based on these investigations, a road map is recommended for the development of the operational emissivity product.

Surface emissivity FORUm mission L2 analysis
2022 Articolo in rivista open access

The FORUM end-to-end simulator project: architecture and results

Sgheri Luca ; Belotti Claudio ; BenYami Maya ; Bianchini Giovanni ; Dominguez Bernardo Carnicero ; Cortesi Ugo ; Cossich William ; Del Bianco Samuele ; Di Natale Gianluca ; Guardabrazo Tomas ; Lajas Dulce ; Maestri Tiziano ; Magurno Davide ; Oetjen Hilke ; Raspollini Piera ; Sgattoni Cristina

FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) will fly as the ninth ESA's Earth Explorer mission, and an end-to-end simulator (E2ES) has been developed as a support tool for the mission selection process and the subsequent development phases. The current status of the FORUM E2ES project is presented together with the characterization of the capabilities of a full physics retrieval code applied to FORUM data. We show how the instrument characteristics and the observed scene conditions impact on the spectrum measured by the instrument, accounting for the main sources of error related to the entire acquisition process, and the consequences on the retrieval algorithm. Both homogeneous and heterogeneous case studies are simulated in clear and cloudy conditions, validating the E2ES against appropriate well-established correlative codes. The performed tests show that the performance of the retrieval algorithm is compliant with the project requirements both in clear and cloudy conditions. The far-infrared (FIR) part of the FORUM spectrum is shown to be sensitive to surface emissivity, in dry atmospheric conditions, and to cirrus clouds, resulting in improved performance of the retrieval algorithm in these conditions. The retrieval errors increase with increasing the scene heterogeneity, both in terms of surface characteristics and in terms of fractional cloud cover of the scene.

FORUM remote sensing
2022 Rapporto di progetto restricted access

FORUM SCIENZA Progress Report n. 5 (RA4)

Questo documento riassume l'attività svolta nei vari WP, le azioni completate e lo stato di del progetto progetto per il periodo di attività dal 9 giugno 2021 (RA3) al 19 aprile 2022 (RA4)

FORUM FORUMScienza
2021 Presentazione / Comunicazione non pubblicata (convegno, evento, webinar...) metadata only access

The FORUM End-to-End Simulator project: architecture and results

Luca Sgheri ; Claudio Belotti ; Maya BenYami ; Giovanni Bianchini ; Bernardo Carnicero Dominguez ; Ugo Cortesi ; William Cossich ; Samuele Del Bianco ; Gianluca Di Natale ; Tomás Guardabrazo ; Dulce Lajas ; Tiziano Maestri ; Davide Magurno ; Hilke Oetjen ; Piera Raspollini ; Cristina Sgattoni

FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) will flight as the 9th ESA's Earth Explorer mission, and an End-to-End Simulator (E2ES) has been developed as a support tool for the mission selection process and the subsequent development phases. The current status of the FORUM E2ES project is presented, together with the characterization of the capabilities of a full physics retrieval code applied to FORUM data. We show how the instrument characteristics and5the observed scene conditions impact on the spectrum measured by the instrument, accounting for the main sources of error related to the entire acquisition process, and the consequences on the retrieval algorithm. Both homogeneous and heterogeneous case studies are simulated in clear and cloudy conditions, validating the E2ES against two independent codes: KLIMA (clear sky) and SACR (cloudy sky). The performed tests show that the performance of the retrieval algorithm is compliant with the project requirements both in clear and cloudy conditions. The far infrared (FIR) part of the FORUM spectrum is shown to be10sensitive to surface emissivity, in dry atmospheric conditions, and to cirrus clouds, resulting in improved performance of the retrieval algorithm in these conditions. The retrieval errors increase with increasing the scene heterogeneity, both in terms of surface characteristics and in terms of fractional cloud cover of the scene.

FORUM Remote Sensing Far InfraRed
2021 Articolo in rivista open access

Phosgene distribution derived from MIPAS ESA v8 data: intercomparisons and trends

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measured the middle-infrared limb emission spectrum of the atmosphere from 2002 to 2012 on board ENVISAT, a polar-orbiting satellite. Recently, the European Space Agency (ESA) completed the final reprocessing of MIPAS measurements, using version 8 of the level 1 and level 2 processors, which include more accurate models, processing strategies, and auxiliary data. The list of retrieved gases has been extended, and it now includes a number of new species with weak emission features in the MIPAS spectral range. The new retrieved trace species include carbonyl chloride (COCl2), also called phosgene. Due to its toxicity, its use has been reduced over the years; however, it is still used by chemical industries for several applications. Besides its direct injection in the troposphere, stratospheric phosgene is mainly produced from the photolysis of CCl4, a molecule present in the atmosphere because of human activity. Since phosgene has a long stratospheric lifetime, it must be carefully monitored as it is involved in the ozone destruction cycles, especially over the winter polar regions.In this paper we exploit the ESA MIPAS version 8 data in order to discuss the phosgene distribution, variability, and trends in the middle and lower stratosphere and in the upper troposphere. The zonal averages show that phosgene volume mixing ratio is larger in the stratosphere, with a peak of 40 pptv (parts per trillion by volume) between 50 and 30 hPa at equatorial latitudes, while at middle and polar latitudes it varies from 10 to 25 pptv. A moderate seasonal variability is observed in polar regions, mostly between 80 and 50 hPa. The comparison of MIPAS-ENVISAT COCl2 v8 profiles with the ones retrieved from MIPAS balloon and ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) measurements highlights a negative bias of about 2 pptv, mainly in polar and mid-latitude regions. Part of this bias is attributed to the fact that the ESA level 2 v8 processor uses an updated spectroscopic database. For the trend computation, a fixed pressure grid is used to interpolate the phosgene profiles, and, for each pressure level, VMR (volume mixing ratio) monthly averages are computed in pre-defined 10? wide latitude bins. Then, for each latitudinal bin and pressure level, a regression model has been fitted to the resulting time series in order to derive the atmospheric trends. We find that the phosgene trends are different in the two hemispheres. The analysis shows that the stratosphere of the Northern Hemisphere is characterized by a negative trend of about -7 pptv per decade, while in the Southern Hemisphere phosgene mixing ratios increase with a rate of the order of +4 pptv per decade. This behavior resembles the stratospheric trend of CCl4, which is the main stratospheric source of COCl2. In the upper troposphere a positive trend is found in both hemispheres.

atmospheric phosgene MIPAS measurements phosgene trend climate change
2021 Articolo in rivista metadata only access

Emissivity Retrievals with FORUM's End-to-end Simulator: Challenges and Recommendations

Maya BenYami ; Hilke Oetjen ; Helen Brindley ; William Cossich ; Dulce Lajas ; Tiziano Maestri ; Davide Magurno ; Piera Raspollini ; Luca Sgheri ; Laura Warwick

Spectral emissivity is a key property of the Earth surface of which only very few measurements exist so far in the far-infrared (FIR) spectral region, even though recent work has shown its FIR contribution is important for accurate modelling of global climate. The European Space Agency's 9th Earth Explorer, FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) will provide the first global spectrally resolved measurements of the Earth's top-of-the-atmosphere (TOA) spectrum in the FIR. In clear-sky conditions with low water vapour content, these measurements will provide a unique opportunity to retrieve spectrally resolved FIR surface emissivity. In preparation for the FORUM mission with an expected launch in 2026, this study takes the first steps towards the development of an operational emissivity retrieval for FORUM by investigating the sensitivity of the emissivity product of a full spectrum optimal estimation retrieval method to different physical and operational parameters. The tool used for the sensitivity tests is the FORUM mission's end-to-end simulator. These tests show that spectral emissivity of most surface types can be retrieved for dry scenes in the 350-600 cm-1 region with an uncertainty ranging from 0.005 to 0.01. In addition, the quality of retrieval is quantified with respect to the precipitable water vapour content of the scene, and the uncertainty caused by the correlation of emissivity with surface temperature is investigated. Two main recommendations are made based on these investigations: (1) As the extent of TOA sensitivity to the surface in the FIR depends on the atmospheric state, the spectral region of the emissivity product should be decided using a so-called information quantifier, calculated from the ratio of the retrieval uncertainty to the a-priori uncertainty. (2) Depending on retrieval input parameters, the correlation of emissivity with surface temperature allows for retrieved emissivities within a small range around the true emissivity. Thus the impact of this correlation on the uncertainty estimates of the product should be quantified in detail during further development of the operational retrieval.

surface emissivity FORUM remote sensing Far InfraRed
2021 Articolo in rivista open access

The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22

Bianca Maria Dinelli ; Piera Raspollini ; Marco Gai ; Luca Sgheri ; Marco Ridolfi ; Simone Ceccherini ; Flavio Barbara ; Nicola Zoppetti ; Elisa Castelli ; Enzo Papandrea ; Paolo Pettinari ; Angelika Dehn ; Anu Dudhia ; Michael Kiefer ; Alessandro Piro ; JeanMarie Flaud ; Manuel LópezPuertas ; David Moore ; John Remedios ; Massimo Bianchini

The observations acquired during the full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, aboard the European Space Agency Environmental Satellite (Envisat), have been analysed with version 8.22 of the Optimised Retrieval Model (ORM), originally developed as the scientific prototype of the ESA level-2 processor for MIPAS observations. The results of the analyses have been included into the MI- PAS level-2 version 8 (level2-v8) database containing atmospheric fields of pressure, temperature, and volume mixing ratio (VMR) of MIPAS main targets H2 O, O3 , HNO3 , CH4 , N2 O, and NO2 , along with the minor gases CFC- 11, ClONO2 , N2 O5 , CFC-12, COF2 , CCl4 , CF4 , HCFC-22, C2 H2 , CH3 Cl, COCl2 , C2 H6 , OCS, and HDO. The database covers all the measurements acquired by MIPAS in the nominal measurement mode of the full resolution (FR) part of the mission (from July 2002 to March 2004) and all the observation modes of the optimised resolution (OR) part (from January 2005 to April 2012). The number of species included in the MIPAS level2-v8 dataset makes it of particular importance for the studies of stratospheric chemistry. The database is considered by ESA the final release of the MIPAS level-2 products.The ORM algorithm is operated at the vertical grid coincident to the tangent altitudes of the observations or to a subset of them, spanning (in the nominal mode) the alti- tude range from 6 to 68km in the FR phase and from 6 to 70 km in the OR period. In the latitude domain, FR profiles are spaced by about 4.7o, while the OR profiles are spaced by about 3.7o. For each retrieved species, the auxiliary data and the retrieval choices are described. Each product is characterised in terms of the retrieval error, spatial resolution, and "useful" vertical range in both phases of the MIPAS mission. These depend on the characteristics of the measurements (spectral and vertical resolution of the measurements), the retrieval choices (number of spectral points in- cluded in the analyses, number of altitudes included in the vertical retrieval grid), and the information content of the measurements for each trace species. For temperature, water vapour, ozone, and nitric acid, the number of degrees of freedom is significantly larger in the OR phase than in the FR one, mainly due to the finer vertical measurement grid. In the FR phase, some trace species are characterised by a smaller retrieval error with respect to the OR phase, mainly due to the larger number of spectral points used in the analyses, along with the reduced vertical resolution. The way of handling possible caveats (negative VMR, vertical grid representation) is discussed. The quality of the retrieved profiles is assessed through four criteria, two providing information on the successful convergence of the retrieval iterations, one on the capability of the retrieval to reproduce the measurements, and one on the presence of outliers. An easy way to identify and filter the problematic profiles with the informa- tion contained in the output files is provided. MIPAS level2- v8 data are available to the scientific community through the ESA portal (https://doi.org/10.5270/EN1-c8hgqx4).

composizione atmosferica MIPAS
2021 Rapporto di progetto restricted access

FORUM SCIENZA Progress Report n. 4 (RA3)

Questo documento riassume l'attività svolta nei vari WP, le azioni completate e lo stato di del progetto per il periodo di attività dal 16 giugno 2020 (RA2) al 9 giugno 2021 (RA3).

FORUM FORUMScienza
2020 Articolo in rivista restricted access

Auto-adaptive Tikhonov regularization of water vapor profiles: application to FORUM measurements

In this paper, we study the retrieval of water vapor profiles from simulated FORUM measurements. We show that the bias towards the a-priori introduced by the Optimal Estimation technique can be reduced by using larger errors for the a-priori. Reducing the strength of the a-priori may, however, cause unphysical oscillations in the resulting profiles because of the ill-conditioning of the retrieval problem. An a-posteriori regularization technique, the Iterative Variable Strength method, is thus applied to reduce the amplitude of the oscillations.

Remote sensing radiative transfer inversion regularization water vapor retrieval FORUM
2020 Rapporto di progetto restricted access

FORUM SCIENZA Progress Report n. 3 (RA2)

Questo documento riassume l'attività svolta nei vari WP, le azioni completate e lo stato di del progetto per il periodo di attività dal 19 febbraio 2020 (RA1) al 16 giugno 2020 (RA2).

FORUM FORUMScienza
2020 Abstract in Atti di convegno metadata only access

ESA Version 8 reprocessing of the 10 years of MIPAS on ENVISAT measurements

P Raspollini ; F Barbara ; M Bianchini ; M Birk ; S Ceccherini ; A Dehn ; M Gai ; B M Dinelli ; A Dudhia ; J M Flaud ; M Hoepfner ; D Hubert ; A Keppens ; M Kiefer ; A Kleinert ; D Moore ; E Papandrea ; G Perron ; A Piro ; M LópezPuertas ; H Oelhaf ; P Pettinari ; J Remedios ; M Ridolfi ; L Sgheri ; G Wagner ; G Wetzel ; N Zoppetti

MIPAS is a Fourier Transform spectrometer that measured the atmospheric limb emission spectra in the middle infrared on board the ENVISAT satellite. These measurements allowed the global monitoring of the three-dimensional (latitude, longitude and altitude) distribution of concentrations of many species, during both day and night, for 10 years, from July 2002 to April 2012. Being a limb sounding instrument, the focus of MIPAS measurements was the study of the atmosphere from the upper troposphere to the stratosphere and above, up to the mesosphere. The interest in these measurements goes beyond the end of the mission, as they can be used in long time series of data to determine changes in our planet's climate. To this purpose, it is therefore important to continue improving their quality. The quality of MIPAS L2 products depends on the quality of the L1 products, on the L2 model accuracy, on the quality of auxiliary data, particularly on spectroscopic data. For the last reanalysis of the whole MIPAS mission, a significant effort was made by the MIPAS Quality Working Group, supported by ESA, to improve both L1 and L2 processors, as well as spectroscopy, with the objectives of obtaining L2 products with increased accuracy, better temporal stability, and a larger number of retrieved species. Here we present the full mission dataset, including vertical profiles of 21 trace species plus temperature, obtained by applying the latest version of ESA L2 processor (ORM V8) to the MIPAS L1 data obtained with version 8 of the L1 processor. The impact of the improvements of both L1 and L2 processors on the quality of the L2 products is presented, as well as results of the validation against independent correlative measurements.

MIPAS Atmospheric composition Level 2 data quality
2019 Rapporto di progetto metadata only access

Final Report of the ESA-ESRIN Contract no. 4000112093/14/I-LG - Support to MIPAS Level 2 processor Verification and Validation - Phase F

P Raspollini ; F Barbara ; B Carli ; S Ceccherini ; M Gai ; N Zoppetti ; M Ridolfi ; J M Flaud ; E Castelli ; B M Dinelli ; E Papandrea ; D Moore ; J Remedios ; A Dudhia ; M Kiefer ; G Wetzel ; H Oelhaf ; M López Puertas ; B Funke ; L Sgheri ; D Hubert ; A Keppens

Riporta i principali risultati ottenuti nell'ambito del progetto: "Support to MIPAS Level 2 processor Verification and Validation - Phase F", Contratto ESA 4000112093/14/I-LG, cioe' la messa a punto del codice ORM_V8 da utilizzare per la rianalisi di livello 2 dell'intera missione di MIPAS/ENVISAT, il dataset processato, i test di verifica e di validazione dei prodotti di Livello 2 generati.

MIPAS Envisat Satellite Earth Observation Final Report
2019 Rapporto di ricerca / Relazione scientifica restricted access

Earth Explorer 9 Candidate Mission FORUM -- Report for Mission Selection

This report is based on contributions from the FORUM Mission Advisory Group MAGHelen Brindley Imperial College London ; UKStefan A Buehler University of Hamburg ; DEDorothee Coppens EUMETSAT ; INTAdrien Deschamps CNES ; FRSteven Dewitte Royal Meteorological Institute of Belgium ; BEBianca M Dinelli ISACCNR ; ITLaurent Labonnote University of Lille ; FRQuentin Libois MétéoFrance ; FRMartin Mlynczak NASA Langley Research Center ; USLuca Palchetti INOCNR ; ITMarco Ridolfi University of Bologna ; ITMartin Riese Forschungszentrum Jülich ; DERoger Saunders Met Office ; UKThe scientific content of the report was compiled by Hilke Oetjen Scientific Coordinator ; based on inputs derived from the MAG ; supporting scientific studies ; campaignactivities ; with contributions from Richard Bantges ; Marco Barucci ; Claudio Belotti ; Giovanni Bianchini ; Elisa Castelli ; Simone Ceccherini ; Bertrand Cluzet ; Mathieu Compiègne ; Ugo Cortesi ; William Cossich ; Francesco D'Amato ; Samuele Del Bianco ; MohamadouAbdoulaye Diallo ; Gianluca Di Natale ; Alessio Di Roma ; Marie Dumont ; Marco Gai ; DinaKhordakova ; Lukas Kluft ; Tiziano Maestri ; Davide Magurno ; Alessio Montori ; Jonathan EMurray ; Piera Raspollini ; Markus Rettinger ; Christian Rolf ; Jacqueline E Russell ; LucaSgheri ; Ralf Sussmann ; Silvia Viciani ; Jérôme Vidot ; Hannes Vogelmann ; Laura Warwick ; the UK FAAM team ; the UK MetOffice ; Dirk SchuettemeyerThe technical content of the report was compiled by Bernardo Carnicero DomínguezTechnical Coordinator ; Charlotte Pachot Payload Technical Coordinator withcontributions from Itziar Barat ; Paolo Bensi ; Christophe Caspar ; Miguel Copano ; MauroFederici ; Dulce Lajas ; Flavio Mariani ; Vasco Pereira ; Stefanie Riel ; Gonçalo Rodrigues ; Bernd Sierk ; Kate Symonds ; Andrea Tromba ; based on inputs derived from the industrialPhase A system ; technical activities ; the FORUM endtoend performance simulatoractivity under the responsibility of the Future Missions ; Instruments Division Specialthanks go to the industrial teams who have supported ESA to bring this report together in avery short time after the Phase A Preliminary Requirements Review

his report forms the basis for the selection of the ninth Earth Explorer mission within ESA's Earth Observation Programme. Two competing 'Fast Track' candidates, the Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM) mission and the Surface ocean KInematics Multiscale (SKIM) mission. Each have each undergone a rapid and compressed Phase A feasibility study. This report covers the FORUM mission.

EE9 FORUM
2019 Poster / Abstract non pubblicati in atti di convegno restricted access

Assessment of quality of MIPAS ESA L2 products

P. Raspollini ; F. Barbara ; M. Bianchini ; M. Birk ; S. Ceccherini ; A. Dehn ; M. Gai ; B. M. Dinelli ; A. Dudhia ; J. M. Flaud ; M. Hoepfner ; D. Hubert ; A. Keppens ; M. Kiefer ; A. Kleinert ; D. Moore ; E. Papandrea ; G. Perron ; A. Piro ; M. López-Puertas ; H. Oelhaf ; P. Pettinari ; J. Remedios ; M. Ridolfi ; L. Sgheri ; G. Wagner ; G. Wetzel ; N. Zoppetti

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a limb-viewing infrared Fourier transform spectrometer that operated from 2002 to 2012 onboard the ENVISAT satellite. The analysis of MIPAS measurements allows to study the temporal evolution of numerous species of interest for the study of the ozone in the stratosphere, pollutants and many green-house gases. The objective of the MIPAS Quality Working Group is to improve the quality of the MIPAS products through a fruitful collaboration among spectroscopists, Level 1, Level 2, and validation teams. A large effort has recently led to implement significant improvements in both ESA Level 1 and Level 2 processors, as well as in spectroscopic database and in some absorption cross-sections in order to improve the quality of the products. In addition to the products already present in the V7 dataset (temperature and the VMR of H2O, O3, HNO3, CH4, N2O, NO2, CFC-11, CFC-12, N2O5, ClONO2, HCFC-22, COF2, CF4, HCN and CCl4), the VMR of six additional species (OCS, CH3Cl, HDO, C2H2, C2H6, COCl2) will be provided in V8 dataset. In order to evaluate the impact of the changes in the products before full mission reprocessing, the analysis of the performances of the products of the modified L1 and L2 processors, as well as the auxiliary data, has been performed on a Diagnostic DataSet (DDS). The orbits of the DDS have been chosen in coincidence with correlative measurements for performing also a preliminary assessment of the accuracy of the products and to evaluate possible changes in the drift. With respect to V7 products, main improvements consist in a reduction of the temperature bias in the first part of the mission, a reduction of the discontinuities in CH4 and N2O time series due to daily gain upgrade, a better filtering of clouds and a better handling of horizontal inhomogeneities.The results of the assessment of the quality of MIPAS measurements will be shown, as well as the study of the temporal evolution and variability of all species. We will also investigate the spatial, seasonal, and interannual variations in the distribution of these species.

MIPAS Quality Assessment
2019 Poster / Abstract non pubblicati in atti di convegno restricted access

Preliminary assessment of the quality of Methyl chloride (CH3Cl) from MIPAS on ENVISAT measurements

P Raspollini ; F Barbara ; M Bianchini ; S Ceccherini ; A Dehn ; M Gai ; B M Dinelli ; A Dudhia ; JM Flaud ; M Höpfner ; M Kiefer ; D Moore ; A Piro ; M LópezPuertas ; H Oelhaf ; P Pettinari ; J Remedios ; M Ridolfi ; L Sgheri ; G Wetzel ; N Zoppetti

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a limb-viewing infrared Fourier transform spectrometer that operated from 2002 to 2012 on board the ENVISAT satellite. The fruitful collaboration among spectroscopists, Level 1, Level 2, and validation teams in the frame of the MIPAS Quality Working Group has recently led to the implementation of significant changes in both ESA Level 1 and Level 2 processors, as well as in the spectroscopic database and in some absorption cross-sections. In addition to the products already present in V7 dataset (temperature and the VMR of H2O, O3, HNO3, CH4, N2O, NO2, CFC-11, CFC-12, N2O5, ClONO2, HCFC-22, COF2, CF4, HCN and CCl4), the VMR of six additional species (OCS, CH3Cl, HDO, C2H2, C2H6, COCl2) will be provided in V8 dataset.Among the new species, methyl chloride (CH3Cl) is of great interest in stratospheric ozone chemistry since it is the most abundant chlorine-containing gas in the troposphere and, in contrast to other relatively long-lived ozone-depleting gases, it has both natural and anthropogenic sources, with the known emission being mainly natural (tropical plants, biomass burning, the ocean, salt marshes and fungi). Since it is not controlled under the Montreal Protocol, its importance is expected to increase in the coming decades as emission controls alter the relative contributions from natural and anthropogenic halogen sources.In this paper we present a preliminary assessment of the quality of the MIPAS CH3Cl data, in terms of precision, accuracy and vertical resolution, and we investigate the spatial and seasonal variations in the distribution of CH3Cl in the upper troposphere/lower stratosphere (UTLS).

MIPAS Methyl chloride Quality Assessment
2018 Presentazione / Comunicazione non pubblicata (convegno, evento, webinar...) restricted access

Quality assessment of MIPAS ESA V8 products before full mission reprocessing

Raspollini Piera ; Barbara Flavio ; Bianchini Massimo ; Birk Manfred ; Castelli Elisa ; Ceccherini Simone ; Dehn Angelika ; Gai Marco ; Dinelli Bianca Maria ; Dudhia Anu ; Flaud JeanMarie ; Hoepfner Michael ; Hubert Daan ; Keppens Arno ; Kiefer Michael ; Kleinert Anne ; Moore David ; Papandrea Enzo ; Perron Gaetan ; Piro Alessandro ; LopezPuertas Manuel ; Oelhaf Hermann ; Pettinari Paolo ; Remedios John ; Ridolfi Marco ; Sgheri Luca ; Wagner Georg ; Wetzel Gerald ; Zoppetti Nicola

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a limb-viewing infrared Fourier transform spectrometer that operated from 2002 to 2012 onboard the ENVISAT satellite. The maintenance and the upgrade of both L1 and L2 ESA processors are accomplished by the Quality Working Group, where a fruitful collaboration among Level 1, Level 2 and validation teams can be exploited. Recently both ESA L1 and L2 processors have been updated, as well as the spectroscopic database and some absorption cross-sections. In addition to the products already present in the current release (V7) of ESA MIPAS data (temperature and the VMR of H2O, O3, HNO3, CH4, N2O, NO2, CFC-11, CFC-12, N2O5, ClONO2, HCFC-22, COF2, CF4, HCN and CCl4), the VMR of six additional species (OCS, CH3Cl, HDO, C2H2, C2H6, COCl2) will be provided in V8 dataset. In preparation of V8 full mission reprocessing, three Diagnostic Datasets have been generated to check the performances of all L1, L2 processors and the new auxiliary data.The analysis of these Diagnostic Datasets and the comparison with previous full mission dataset V7 will be used to perform a first assessment of the quality of the new V8 products. In the paper special focus will be given to the new species.

MIPAS ENVISAT ESA V8 Products
2018 Presentazione / Comunicazione non pubblicata (convegno, evento, webinar...) metadata only access

Distribution and trend estimation of MIPAS ESA V7 carbon tetrachloride data and preliminary results of variability of new species derived with MIPAS ESA V8 processor

MIPAS on ENVISAT performed almost continuous measurements of atmospheric composition for approximately 10 years, from June 2002 to April 2012. ESA processor, based on the algorithm ORM (Optimized Retrieval Model), originally designed for the Near Real Time analysis, is currently used for the reanalysis of the full MIPAS mission. Version 7 of the full mission data was released in 2016, but further improvements have been recently performed in ORM V8 to be used in next full mission reanalysis. For these latest releases (V7 and V8) L1 data corrected for reducing the instrumental drift are used.TheinstrumentaldriftisduetoMIPASphotometricdetectorsnonlinearitiesthatchangewithtimeduetothe ageing of the instrument. Numerous species are retrieved from MIPAS measurements. Among them, CCl4 has been recently studied. This species has received increasing interest due to the so called "mystery of CCl4", since it was found that its atmospheric concentration at the surface declines with a rate significantly smaller than its lifetime-limited rate. Indeed there is a discrepancy between the atmospheric observations and the estimated distribution based on the reported production and consumption. MIPAS products generated with Version 7 of the L2 ESA algorithm were used to estimate CCl4 distributions, its trend, and atmospheric lifetime in the upper troposphere / lower stratosphere (UTLS) region. The trends derived by these observations between 2002 and 2012 as a function of both latitude and altitude confirm the decline of atmospheric mixing ratios, in agreement with ground based observations. Stratospheric trend derived from the MIPAS data are non-uniform, with some positive trends even being found in the middle stratosphere, mainly at high altitudes in the Southern Hemisphere. The variability in stratospheric trends reflects the impact of variability in stratospheric transport on trace gases and their temporal evolution. In addition to CCl4, some preliminary results obtained with the latest version of the processor (V8), that performs the analysis of a larger number of species and takes into account horizontal inhomogeneities, will be shown.

MIPAS trend carbontetrachloride Envisat
2017 Poster in Atti di convegno metadata only access

Ozone trend estimation using MIPAS ESA Level 2 Version 7 data

The largest part of the Earth's atmosphere ozone is located in the stratosphere, forming the so-called ozone layer. This layer played a key role in the development of life on Earth and still protects the planet from the most Dangerous ultraviolet radiation. After the discovery of the high ozone depletion potential of some anthropogenic origin substances (e.g. chlorofluorocarbons), some limitations in the production of the major ozone-depleting substances (ODS) have been applied with the Montreal Protocol in 1987. The reduction of the ODS concentrations in the stratosphere started in the mid-1990s and, thereafter, the stratospheric ozone layer should have started its recovery. In the attempt to detect this recovery we use the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements to estimate the stratospheric ozone trend in the mission period (July 2002 - April 2012). In particular, we use MIPAS products generated with Version 7 of the Level 2 (L2v7) algorithm operated by the European Space Agency. The L2v7 data are based on the MIPAS Level 1b radiances Version 7. These radiances are calculated with an improved radiometric calibration that exploits a time-dependent non-linearity correction scheme. After this correction the residual drift of the calibration error is smaller than 1% across the entire mission, thus allowing to determine accurate trend estimates.

Ozone trend MIPAS