List of publications

5 results found

Search by title or abstract

Search by author

Select year

Filter by type

 
2023 Articolo in rivista open access

The aberrant epigenome of DNMT3B-mutated ICF1 patient iPSCs is amenable to correction, with the exception of a subset of regions with H3K4me3- and/or CTCF-based epigenetic memory

Bi-allelic hypomorphic mutations in DNMT3B disrupt DNA methyltransferase activity and lead to immunodeficiency, centromeric instability, facial anomalies syndrome, type 1 (ICF1). Although several ICF1 phenotypes have been linked to abnormally hypomethylated repetitive regions, the unique genomic regions responsible for the remaining disease phenotypes remain largely uncharacterized. Here we explored two ICF1 patient-derived induced pluripotent stem cells (iPSCs) and their CRISPR-Cas9-corrected clones to determine whether DNMT3B correction can globally overcome DNA methylation defects and related changes in the epigenome. Hypomethylated regions throughout the genome are highly comparable between ICF1 iPSCs carrying different DNMT3B variants, and significantly overlap with those in ICF1 patient peripheral blood and lymphoblastoid cell lines. These regions include large CpG island domains, as well as promoters and enhancers of several lineage-specific genes, in particular immune-related, suggesting that they are premarked during early development. CRISPR-corrected ICF1 iPSCs reveal that the majority of phenotype-related hypomethylated regions reacquire normal DNA methylation levels following editing. However, at the most severely hypomethylated regions in ICF1 iPSCs, which also display the highest increases in H3K4me3 levels and/or abnormal CTCF binding, the epigenetic memory persists, and hypomethylation remains uncorrected. Overall, we demonstrate that restoring the catalytic activity of DNMT3B can reverse the majority of the aberrant ICF1 epigenome. However, a small fraction of the genome is resilient to this rescue, highlighting the challenge of reverting disease states that are due to genome-wide epigenetic perturbations. Uncovering the basis for the persistent epigenetic memory will promote the development of strategies to overcome this obstacle.

Methylation ChIP-seq BS-seq Omics Epigenetics ICF syndrome
2022 Articolo in rivista open access

Multi-omics data integration provides insights into the post-harvest biology of a long shelf-life tomato landrace

In this study we investigated the transcriptome and epigenome dynamics of the tomato fruit during post-harvest in a landracebelonging to a group of tomatoes (Solanum lycopersicum L.) collectively known as "Piennolo del Vesuvio", all characterized by a long shelflife. Expression of protein-coding genes and microRNAs as well as DNA methylation patterns and histone modifications were analysedin distinct post-harvest phases. Multi-omics data integration contributed to the elucidation of the molecular mechanisms underlyingprocesses leading to long shelf-life. We unveiled global changes in transcriptome and epigenome. DNA methylation increased and therepressive histone mark H3K27me3 was lost as the fruit progressed from red ripe to 150 days post-harvest. Thousands of genes weredifferentially expressed, about half of which were potentially epi-regulated as they were engaged in at least one epi-mark change inaddition to being microRNA targets in ~5% of cases. Down-regulation of the ripening regulator MADS-RIN and of genes involved inethylene response and cell wall degradation was consistent with the delayed fruit softening. Large-scale epigenome reprogrammingthat occurred in the fruit during post-harvest likely contributed to delayed fruit senescence.

Tomato epigenetics post-harvest multi-omics
2019 Articolo in rivista metadata only access

HiCeekR: A Novel Shiny App for Hi-C Data Analysis

Lucio Di Filippo ; Dario Righelli ; Miriam Gagliardi ; Maria Rosaria Matarazzo ; Claudia Angelini

The High-throughput Chromosome Conformation Capture (Hi-C) technique combines the power of the Next Generation Sequencing technologies with chromosome conformation capture approach to study the 3D chromatin organization at the genome-wide scale. Although such a technique is quite recent, many tools are already available for pre-processing and analyzing Hi-C data, allowing to identify chromatin loops, topological associating domains and A/B compartments. However, only a few of them provide an exhaustive analysis pipeline or allow to easily integrate and visualize other omic layers. Moreover, most of the available tools are designed for expert users, who have great confidence with command-line applications. In this paper, we present HiCeekR (https://github.com/lucidif/HiCeekR), a novel R Graphical User Interface (GUI) that allows researchers to easily perform a complete Hi-C data analysis. With the aid of the Shiny libraries, it integrates several R/Bioconductor packages for Hi-C data analysis and visualization, guiding the user during the entire process. Here, we describe its architecture and functionalities, then illustrate its capabilities using a publicly available dataset

Hi-C user-friendly interface long-range interactions genome organization topologically associated domains
2017 Articolo in rivista metadata only access

ICF-specific DNMT3B dysfunction interferes with intragenic regulation of mRNA transcription and alternative splicing.

Gatto Sole ; Gagliardi Miriam ; Franzese Monica ; Leppert Sylwia ; Papa Mariarosaria ; Cammisa Marco ; Grillo Giacomo ; Velasco Guillame ; Francastel Claire ; Toubiana Shir ; D'Esposito Maurizio ; Angelini Claudia ; Matarazzo Maria R

Hypomorphic mutations in DNA-methyltransferase DNMT3B cause majority of the rare disorder Immunodeficiency, Centromere instability and Facial anomalies syndrome cases (ICF1). By unspecified mechanisms, mutant-DNMT3B interferes with lymphoid-specific pathways resulting in immune response defects. Interestingly, recent findings report that DNMT3B shapes intragenic CpG-methylation of highly-transcribed genes. However, how the DNMT3B-dependent epigenetic network modulates transcription and whether ICF1-specific mutations impair this process remains unknown. We performed a transcriptomic and epigenomic study in patient-derived B-cell lines to investigate the genome-scale effects of DNMT3B dysfunction. We highlighted that altered intragenic CpG-methylation impairs multiple aspects of transcriptional regulation, like alternative TSS usage, antisense transcription and exon splicing. These defects preferentially associate with changes of intragenic H3K4me3 and at lesser extent of H3K27me3 and H3K36me3. In addition, we highlighted a novel DNMT3B activity in modulating the self-regulatory circuit of sense-antisense pairs and the exon skipping during alternative splicing, through interacting with RNA molecules. Strikingly, altered transcription affects disease relevant genes, as for instance the memory-B cell marker CD27 and PTPRC genes, providing us with biological insights into the ICF1-syndrome pathogenesis. Our genome-scale approach sheds light on the mechanisms still poorly understood of the intragenic function of DNMT3B and DNA methylation in gene expression regulation.

RNA-seq ChIP-seq
2013 Articolo in rivista metadata only access

L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation

Metabolites are emerging as key mediators of crosstalk between metabolic flux, cellular signaling, and epigenetic regulation of cell fate. We found that the nonessential amino acid L-proline (L-Pro) acts as a signaling molecule that promotes the conversion of embryonic stem cells into mesenchymal-like, spindle-shaped, highly motile, invasive pluripotent stem cells. This embryonic-stem-cell-to-mesenchymal-like transition (esMT) is accompanied by a genome-wide remodeling of the H3K9 and H3K36 methylation status. Consistently, L-Pro-induced esMT is fully reversible either after L-Pro withdrawal or by addition of ascorbic acid (vitamin C), which in turn reduces H3K9 and H3K36 methylation, promoting a mesenchymal-like-to-embryonic-stem-cell transition (MesT). These findings suggest that L-Pro, which is produced by proteolytic remodeling of the extracellular matrix, may act as a microenvironmental cue to control stem cell behavior.