List of publications

2 results found

Search by title or abstract

Search by author

Select year

Filter by type

 
2024 Articolo in rivista open access

Glucagon-like peptide-1 and interleukin-6 interaction in response to physical exercise: An in-silico model in the framework of immunometabolism

Morettini, Micaela ; Palumbo, Maria Concetta ; Bottiglione, Alessandro ; Danieli, Andrea ; Del Giudice, Simone ; Burattini, Laura ; Tura, Andrea

Background and objective: Glucagon-like peptide 1 (GLP-1) is classically identified as an incretin hormone, secreted in response to nutrient ingestion and able to enhance glucose-stimulated insulin secretion. However, other stimuli, such as physical exercise, may enhance GLP-1 plasma levels, and this exercise-induced GLP-1 secretion is mediated by interleukin-6 (IL-6), a cytokine secreted by contracting skeletal muscle. The aim of the study is to propose a mathematical model of IL-6-induced GLP-1 secretion and kinetics in response to physical exercise of moderate intensity. Methods: The model includes the GLP-1 subsystem (with two pools: gut and plasma) and the IL-6 subsystem (again with two pools: skeletal muscle and plasma); it provides a parameter of possible clinical relevance representing the sensitivity of GLP-1 to IL-6 (k0). The model was validated on mean IL-6 and GLP-1 data derived from the scientific literature and on a total of 100 virtual subjects. Results: Model validation provided mean residuals between 0.0051 and 0.5493 pg⋅mL-1 for IL-6 (in view of concentration values ranging from 0.8405 to 3.9718 pg⋅mL-1) and between 0.0133 and 4.1540 pmol⋅L-1 for GLP-1 (in view of concentration values ranging from 0.9387 to 17.9714 pmol⋅L-1); a positive significant linear correlation (r = 0.85, p<0.001) was found between k0 and the ratio between areas under GLP-1 and IL-6 curve, over the virtual subjects. Conclusions: The model accurately captures IL-6-induced GLP-1 kinetics in response to physical exercise.

Compartmental model Exercise immunometabolism Inter-organ crosstalk Monte Carlo simulation Myokine Parameter estimation
2022 Articolo in rivista open access

Mathematical model of insulin kinetics accounting for the amino acids effect during a mixed meal tolerance test

Morettini M ; Palumbo MC ; Gobl C ; Burattini L ; Karusheva Y ; Roden M ; Pacini G ; Tura A

Amino acids (AAs) are well known to be involved in the regulation of glucose metabolism and, in particular, of insulin secretion. However, the effects of different AAs on insulin release and kinetics have not been completely elucidated. The aim of this study was to propose a mathematical model that includes the effect of AAs on insulin kinetics during a mixed meal tolerance test. To this aim, five different models were proposed and compared. Validation was performed using average data, derived from the scientific literature, regarding subjects with normal glucose tolerance (CNT) and with type 2 diabetes (T2D). From the average data of the CNT and T2D people, data for two virtual populations (100 for each group) were generated for further model validation. Among the five proposed models, a simple model including one first-order differential equation showed the best results in terms of model performance (best compromise between model structure parsimony, estimated parameters plausibility, and data fit accuracy). With regard to the contribution of AAs to insulin appearance/disappearance (k model parameter), model analysis of the average data from the literature yielded 0.0247 (confidence interval, CI: 0.0168 - 0.0325) and -0.0048 (CI: -0.0281 - 0.0185) ?U·ml/(?mol·l·min), for CNT and T2D, respectively. This suggests a positive effect of AAs on insulin secretion in CNT, and negligible effect in T2D. In conclusion, a simple model, including single first-order differential equation, may help to describe the possible AAs effects on insulin kinetics during a physiological metabolic test, and provide parameters that can be assessed in the single individuals.

branched-chain amino acids insulin secretion type 2 diabetes minimal model parameter estimation glucose homeostasis