Mechanotransduction is the process that enables the conversion of mechanical cues into biochemical signaling. While all our cells are well known to be sensitive to such stimuli, the details of the systemic interaction between mechanical input and inflammation are not well integrated. Often, indeed, they are considered and studied in relatively compartmentalized areas, and we therefore argue here that to understand the relationship of mechanical stimuli with inflammation – with a high translational potential - it is crucial to offer and analyze a unified view of mechanotransduction. We therefore present here pathway representation, recollected with the standard systems biology markup language (SBML) and explored with network biology approaches, offering RAC1 as an exemplar and emerging molecule with potential for medical translation.
Mechanotransduction RAC1 Systems biology markup language (SBML) Inflammation Network analysis Enrichment
Electrical stimulation (ES) is widely employed in both clinical therapies and research settings where it has shown promise in promoting tissue regeneration, wound healing, and inflammation control. Research has also highlighted ES as a regulator of DNA demethylation, which plays a critical role in nerve regeneration and cellular repair mechanisms. While the impact of ES on epigenetic processes is recognized, its broader effects on cellular functions, particularly in inflammation and wound healing, are less understood. We recently showed how ES impacts inflammatory states by modulating transcriptomic and metabolomic profiles in a 3Din vitromodel where human fibroblasts and keratinocytes are included in a collagen matrix, i.e., even in the absence of the nervous system. Here, we propose to deepen our exploration on the differential effects on DNA methylation, including an investigation of the correlation with age acceleration using a mitotic clock. These results confirm and caution on the differential effect of DC on inflamed and non-inflamed samples and suggest an involvement of direct current stimuli at 1 V ((Formula presented.)) in the control of senescent processes associated with mitosis and inflammation; the mechanistic details of these will have to be clarified with additional experiments.
3D bioconstruct
electrostimulation
inflammation
methylage
methylation