Defining accurate and flexible models for real-world networks of human beings is instrumental to understand the observed properties of phenomena taking place across those networks and to support computer simulations of dynamic processes of interest for several areas of research - including computational epidemiology, which is recently high on the agenda. In this paper we present a flexible model to generate age-stratified and geo-referenced synthetic social networks on the basis of widely available aggregated demographic data and, possibly, of estimated age-based social mixing patterns. Using the Italian city of Florence as a case study, we characterize our network model under selected configurations and we show its potential as a building block for the simulation of infections' propagation. A fully operational and parametric implementation of our model is released as open-source.
Urban social network
Graph model
Simulator
Epidemic
The COVID-19 pandemic triggered a global research effort to define and assess timely and effective containment policies. Understanding the role that specific venues play in the dynamics of epidemic spread is critical to guide the implementation of fine-grained non-pharmaceutical interventions (NPIs). In this paper, we present a new model of context-dependent interactions that integrates information about the surrounding territory and the social fabric. Building on this model, we developed an open-source data-driven simulator of the patterns of fruition of specific gathering places that can be easily configured to project and compare multiple scenarios. We focused on the greatest park of the City of Florence, Italy, to provide experimental evidence that our simulator produces contact graphs with unique, realistic features, and that gaining control of the mechanisms that govern interactions at the local scale allows to unveil and possibly control non-trivial aspects of the epidemic.
The definition of suitable generative models for synthetic yet realistic social networks is a widely studied problem in the literature. By not being tied to any real data, random graph models cannot capture all the subtleties of real networks and are inadequate for many practical contexts--including areas of research, such as computational epidemiology, which are recently high on the agenda. At the same time, the so-called contact networks describe interactions, rather than relationships, and are strongly dependent on the application and on the size and quality of the sample data used to infer them. To fill the gap between these two approaches, we present a data-driven model for urban social networks, implemented and released as open source software. By using just widely available aggregated demographic and social-mixing data, we are able to create, for a territory of interest, an age-stratified and geo-referenced synthetic population whose individuals are connected by "strong ties" of two types: Intra-household (e.g., kinship) or friendship. While household links are entirely data-driven, we propose a parametric probabilistic model for friendship, based on the assumption that distances and age differences play a role, and that not all individuals are equally sociable. The demographic and geographic factors governing the structure of the obtained network under different configurations, are thoroughly studied through extensive simulations focused on three Italian cities of different size.
simulator
open source
data-driven
graph model
urban social network