List of publications

2 results found

Search by title or abstract

Search by author

Select year

Filter by type

 
2025 Articolo in rivista restricted access

Thread-safe multiphase lattice Boltzmann model for droplet and bubble dynamics at high density and viscosity contrasts

This study presents a high-order, thread-safe version of the lattice Boltzmann method, incorporating an interface-capturing equation, based on the conservative Allen-Cahn equation, to simulate incompressible two-component systems with high-density and viscosity contrasts. The method utilizes a recently proposed thread-safe implementation optimized for shared-memory architectures, and it is employed to reproduce the dynamics of droplets and bubbles in several test cases with results in agreement with experiments and other numerical simulations from the literature. The proposed approach offers promising opportunities for high-performance computing simulations of realistic fluid systems with high-density and viscosity contrasts for advanced applications in environmental, atmospheric, and meteorological flows, all the way down to microfluidic and biological systems, particularly on graphic processing unit-based architectures.

High performance computing, Mathematical modeling, Fluid systems, Computational fluid dynamics, Lattice Boltzmann methods, Multiphase flows, Bubble dynamics, Viscosity
2024 Articolo in rivista restricted access

High-order thread-safe lattice Boltzmann model for high performance computing turbulent flow simulations

We present a highly optimized thread-safe lattice Boltzmann model in which the non-equilibrium part of the distribution function is locally reconstructed via recursivity of Hermite polynomials. Such a procedure allows the explicit incorporation of non-equilibrium moments of the distribution up to the order supported by the lattice. Thus, the proposed approach increases accuracy and stability at low viscosities without compromising performance and amenability to parallelization with respect to standard lattice Boltzmann models. The high-order thread-safe lattice Boltzmann is tested on two types of turbulent flows, namely, the turbulent channel flow at R e τ = 180 and the axisymmetric turbulent jet at Re = 7000; it delivers results in excellent agreement with reference data [direct numerical simulations (DNS), theory, and experiments] and (a) achieves peak performance [ ∼ 5 × 10 12 floating point operations (FLOP) per second and an arithmetic intensity of ∼ 7 FLOP / byte on a single graphic processing unit] by significantly reducing the memory footprint, (b) retains the algorithmic simplicity of standard lattice Boltzmann computing, and (c) allows to perform stable simulations at vanishingly low viscosities. Our findings open attractive prospects for high-performance simulations of realistic turbulent flows on GPU-based architectures. Such expectations are confirmed by excellent agreement among lattice Boltzmann, experimental, and DNS reference data.

High performance computing, lattice Boltzmann simulations, turbulent flows