List of publications

6 results found

Search by title or abstract

Search by author

Select year

Filter by type

 
2016 Articolo in rivista metadata only access

Turning ability analysis of a fully appended twin screw vessel by CFD. Part II: Single vs. twin rudder configuration

In the present paper, the analysis of the turning capability of the naval supply vessel presented in Part I (Broglia et al., 2015) is continued with different stern appendages, namely twin rudder and centreline skeg. The main purpose of the analysis is to assess the capability of an in-house CFD tool in capturing the different manoeuvring characteristics of the ship hulls; the test case is challenging, as the difference be- tween the two configurations lies in the complex flow structure related to rudder-propeller interactions. Moreover, although the twin rudder solution slightly improves the poor course keeping ability of the original vessel, the course stability remains poor and, consequently, large lateral motions and drift angle have to be expected during the manoeuvre. The manoeuvring capabilities of the new configuration are discussed and compared with the single rudder configuration, focusing on the nature of the hydrodynamic forces and moments acting on the main hull and appendages during the transient and stabilized phases of the manoeuvre. Emphasis will be also given to the different contributions of the propulsion system in the twin rudder configuration, that results from the different rudder-propeller interaction

Computational methods Twin rudder/twin screw ship Manoeuvring hydro-loads Appendages effect Rudder-propeller interactions
2015 Articolo in rivista metadata only access

Turning ability analysis of a fully appended twin screw vessel by CFD. Part I: Single rudder configuration

The turning circle manoeuvre of a naval supply vessel (characterized by a block coefficient <sup>CB</sup>~0.60) is simulated by the integration of the unsteady Reynolds-Averaged Navier Stokes equations coupled with the equations of rigid body motion with six degrees of freedom. The model is equipped with all the appendages, and it is characterised by an unusual single rudder/twin screws configuration. This arrangement causes poor directional stability qualities, which makes the prediction of the trajectory a challenging problem. As already shown in previous works, the treatment of the in-plane loads exerted by the propellers is of paramount importance; to this aim each propeller is simulated by an actuator disk model, properly modified to account for oblique flow effects. The main goal of the present paper is to assess the capability of the CFD tool to accurately predict the trajectory of the ship and to analyse the complex flow field around a vessel performing a turning manoeuvre. Distribution of forces and moments on the main hull, stern appendages and rudder are analysed in order to gain a deeper insight into the dynamic behaviour of the vessel. Validation is provided by the comparison with experimental data from free running tests.

Appendages effect Computational methods Manoeuvring hydro-loads Twin screw ship
2014 Articolo in rivista metadata only access

A study on the effect of the cushion pressure on a planing surface

The study of a planing flat plate may be considered as a topic of wide interest for academic and industrial applications. From experimental and numerical studies, flow separation occurs near the stagnation point and a thin jet sprays forward along the plate, while a clear wave pattern develops downstream. In the present study, the effect on the jet-root position caused by a cushion pressure applied on the downstream free surface is considered and the consequent variation in lift and drag coefficients is studied. This canonical problem is important in the design of Surface Effects Ships (SES), the bow seal of which may be assumed as a planing deformable surface with a cushion pressure behind it. This study focuses on the hydrodynamic interaction between the plate and the cushion pressure; as such, the plate geometry is prescribed. A two-dimensional numerical study of this problem has been performed in the present work using a finite-volume Chimera-overlapping-grids approach to numerically solve the Navier-Stokes equations; the free surface is handled by means of two-phase level-set method. Validity of the results is assessed by the comparison with theoretical and numerical results available in the literature.

CFD Flat plate Planing surfaces Two phases
2012 Articolo in rivista metadata only access

Simulation of turning circle by CFD: Analysis of different propeller models and their effect on manoeuvring prediction

Propeller modelling in CFD simulations is a key issue for the correct prediction of hull-propeller interactions, manoeuvring characteristics and the flow field in the stern region of a marine vehicle. From this point of view, actuator disk approaches have proved their reliability and computational efficiency; for these reasons, they are commonly used for the analysis of propulsive performance of a ship. Nevertheless, these models often neglect peculiar physical phenomena which characterise the operating propeller in off-design condition, namely the in-plane loads that are of paramount importance when considering non-standard or unusual propeller/rudder arrangements. In order to emphasize the importance of these components (in particular the propeller lateral force) and the need of a detailed propeller model for the correct prediction of the manoeuvring qualities of a ship, the turning circle manoeuvre of a self-propelled fully appended twin screw tanker-like ship model with a single rudder is simulated by the unsteady RANS solver ?navis developed at CNR-INSEAN; several propeller models able to include the effect of the strong oblique flow component encountered during a manoeuvre have been considered and compared. It is emphasized that, despite these models account for very complex and fundamental physical effects, which would be lost by a traditional actuator disk approach, the increase in computational resources is almost negligible. The accuracy of these models is assessed by comparison with experimental data from free running tests. The main features of the flow field, with particular attention to the vortical structures detached from the hull are presented as well.

Computational methods Marine engineering Twin screw ship Manoeuvring Propeller loads
2012 Contributo in Atti di convegno metadata only access

CFD Maneuvering Prediction of a Twin Screw Vessel with Different Stern Appendages Configuration

The turning circle maneuver of a self-propelled tanker like ship model is numerically simulated through the integration of the unsteady Reynolds averaged Navier-Stokes (uRaNS) equations coupled with the equations of the motion of a rigid body. The solution is achieved by means of the unsteady RANS solver ?navis developed at CNR-INSEAN. The focus here is on the analysis of the maneuvering behavior of the ship with two different stern appendages configurations; namely, a twin screw with a single rudder and a twin screw, twin rudder with a central skeg. Each propeller is taken into account by a model based on the actuator disk concept; anyhow, in order to correctly capture the turning maneuvering behavior of the model, a suitable model which takes into account for oblique flow effects has to be considered. Results from a preliminary verification assessment are discussed; validation of the predicted trajectory and the kinematical parameters is provided by comparison with experimental data from free running tests. Maneuvering abilities of the two configurations are discussed; in order to better understand the different behavior of the two configurations, an in depth analysis of the force and moments on the hull and on the individual appendages is provided.

CFD Manoeuvring Naval Hydordynamics
2012 Contributo in Atti di convegno metadata only access

The turning circle maneuver of a Twin Screw Vessel with different stern appendages configuration

The turning circle maneuver of a self-propelled tanker like ship model is numerically simulated through the integration of the unsteady Reynolds averaged Navier-Stokes (uRaNS) equations coupled with the equations of the motion of a rigid body. The solution is achieved by means of the unsteady RANS solver Xnavis developed at CNR-INSEAN. The focus here is on the analysis of the maneuvering behavior of the ship with two different stern appendages configurations; namely, a twin screw with a single rudder and a twin screw, twin rudder with a central skeg. Each propeller is taken into account by a model based on the actuator disk concept; anyhow, in order to correctly capture the turning maneuvering behavior of the model, a suitable model which takes into account for oblique flow effects has to be considered. Results from a preliminary verification assessment are discussed; validation of the predicted trajectory and the kinematical parameters is provided by comparison with experimental data from free running tests. Maneuvering abilities of the two configurations are discussed; in order to better understand the different behavior of the two configurations, an in depth analysis of the force and moments on the hull and on the individual appendages is provided.

CFD Naval Hydrodynamics Free Surface Flows Turbulent Flows Manoeuvering