List of publications

2 results found

Search by title or abstract

Search by author

Select year

Filter by type

 
2019 metadata only access

Hypoxia-regulated miRNAs in human mesenchymal stem cells: Exploring the regulatory effects in ischemic disorders

Dell'aversana C ; Cuomo F ; Botti C ; Maione C ; Carissimo A ; Casamassimi A ; Altucci L ; Cobellis G

Human mesenchymal/stromal stem cells (hMSC) are the most promising cell source for adult cell therapies in regenerative medicine. Many clinical trials have reported the use of autologous transplantation of hMSCs in several disorders, but with limited results. To exert their potential, hMSCs could exhibit efficient homing and migration toward lesion sites among other effects, but the underlying process is not clear enough. To further increase the knowledge, we studied the co-regulation between hypoxia-regulated genes and miRNAs. To this end, we investigated the miRNA expression profile of healthy hMSCs in low oxygen/nutrient conditions to mimic ischemia and compared with cells of patients suffering from critical limb ischemia (CLI). miRNAs are small, highly conserved, non-coding RNAs, skilled in the control of the target's expression level in a fine-tuned way. After analyzing the miRNOme in CLI-derived hMSC cells and healthy controls, and intersecting the results with the mRNA expression dataset under hypoxic conditions, we identified two miRNAs potentially relevant to the disease: miR-29b as a pathological marker of the disease and miR-638 as a therapeutic target. This study yielded a deeper understanding of stem cell biology and ischemic disorders, opening new potential treatments in the future.

Bioinformatics miRNA
2019 Articolo in rivista metadata only access

HDAC2-dependent miRNA signature in acute myeloid leukemia

Conte M ; Dell'Aversana C ; Sgueglia G ; Carissimo A ; Altucci L

Acute myeloid leukemia (AML) arises from a complex sequence of biological and finely orchestrated events that are still poorly understood. Increasingly, epigenetic studies are providing exciting findings that may be exploited in promising and personalized cutting-edge therapies. A more appropriate and broader screening of possible players in cancer could identify a master molecular mechanism in AML. Here, we build on our previously published study by evaluating a histone deacetylase (HDAC)2-mediated miRNA regulatory network in U937 leukemic cells. Following a comparative miRNA profiling analysis in genetically and enzymatically HDAC2-downregulated AML cells, we identified miR-96-5p and miR-92a-3p as potential regulators in AML etiopathology by targeting defined genes. Our findings support the potentially beneficial role of alternative physiopathological interventions.

Bioinformatics